Canonical Correlation Analysis for Data Fusion and Group Inferences

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized canonical correlation analysis for disparate data fusion

Manifold matching works to identify embeddings of multiple disparate data spaces into the same low-dimensional space, where joint inference can be pursued. It is an enabling methodology for fusion and inference from multiple and massive disparate data sources. In this paper we focus on a method called Canonical Correlation Analysis (CCA) and its generalization Generalized Canonical Correlation ...

متن کامل

Canonical correlation analysis for functional data

Classical canonical correlation analysis seeks the associations between two data sets, i.e. it searches for linear combinations of the original variables having maximal correlation. Our task is to maximize this correlation, and is equivalent to solving a generalized eigenvalue problem. The maximal correlation coefficient (being a solution of this problem) is the first canonical correlation coef...

متن کامل

Audio-Visual Synchronization and Fusion using Canonical Correlation Analysis

It is well-known that early integration (also called data fusion) is effective when the modalities are correlated, and late integration (also called decision or opinion fusion) is optimal when modalities are uncorrelated. In this paper, we propose a new multimodal fusion strategy for open-set speaker identification using a combination of early and late integration following canonical correlatio...

متن کامل

Correspondence between fMRI and SNP data by group sparse canonical correlation analysis

Both genetic variants and brain region abnormalities are recognized as important factors for complex diseases (e.g., schizophrenia). In this paper, we investigated the correspondence between single nucleotide polymorphism (SNP) and brain activity measured by functional magnetic resonance imaging (fMRI) to understand how genetic variation influences the brain activity. A group sparse canonical c...

متن کامل

Group Study of Simulated Driving fMRI Data by Multiset Canonical Correlation Analysis

In this work, we apply a novel statistical method, multiset canonical correlation analysis (M-CCA), to study a group of functional magnetic resonance imaging (fMRI) datasets acquired during simulated driving task. The M-CCA method jointly decomposes fMRI datasets from different subjects/sessions into brain activation maps and their associated time courses, such that the correlation in each grou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Signal Processing Magazine

سال: 2010

ISSN: 1053-5888

DOI: 10.1109/msp.2010.936725